
Docker Container Course

Erdeniz Ünvan

Course Content

 Understanding the DevOps
 The Docker Technology
 Install Docker Server
 Docker Commands
 Docker Registry and Repositories
 Running and Managing Containers
 Creating and Running a Simple Web App
 Creating and Managing Docker Images
 Docker Volumes
 Docker Networking
 Docker Compose and YAML
 Orchestration with Swarm
 What is next?

• Kubernetes, Ansible, Openshift

Background

 , B.Sc., Anadolu University Business Administration

 , d.Sc., HEPL - Haute Ecole de la Province de Liège

• LSTM RNN Stock Market Prediction
 8, AISBL, Brussels, Data Scientist
 200 , Fastlane, Ljubljana, IT Instructor

 2011-2015, AcademyTech, Istanbul,

 2016- Founder, Knowledge Club Training & Consultancy
• DevOps: Docker Container, Kubernetes

• Python: Data Science, Machine Learning, Artificial Intelligence,

2006

2008

200

9

IT Instructor

 Network Automation, Robotic Process Automation, Application
 Development

Developer •

1. Introduction

 What is Docker?

• In 2013, started as opensource project at dotCloud,Inc.

• Renamed as Docker,Inc. at October, 2013

 Infrastructure Shifts

 90s Pre-Virtualization: Physical Servers (80s:Mainframes)

Problems:
• Huge Cost
• Slow Deployment
• Hard to Migrate

Hypervisor Virtualization

 2000s Hypervisor Virtualization: VMWare, HyperV,
Logical Domains

Benefits:
• Cost-Efficient
• Easy to Scale

Limitations:
• Resource Duplication
• Application Portability

Cloud

 2010s Cloud Technologies

• Amazon Web Services, Microsoft Azure and Google Cloud
Platform, IBM with 34b$ Acqusition of Red Hat

Amazon's Flagship flagship AWS Lambda launched in 2014.
Lambda can be triggered by AWS services such as Amazon
Simple Storage Service (S3), DynamoDB, Kinesis, SNS, and
CloudWatch

Google App Engine launched 2008. App Engine supports
Node.js, Java, Ruby, C#, Go, Python, and PHP and database
products are Cloud Datastore and Firebase. Kubernetes was
created by Google in 2015 and is an open-source platform

 Flagship, Azure Functions, allows users users to execute
their code, written in languages including JavaScript, C#.
Functions also interact with other Azure products including
Azure Cosmos DB and Azure Storage.

Container Virtualization

 2015s: Container Technologies

Benefits:
• Cost-Efficient
• Fast Deployment
• Portability

Hypervisor vs. Container Virtualization

Software: Agile vs. Waterfall

DevOps

 DevOps is an IT mindset that encourages communication,
collaboration, integration and automation among software
developers and IT operations in order to improve the speed
and quality of delivering software

 DevOps is the offspring of agile software development

 DevOps Practices:

• Continuous Integration

• Continuous Delivery

• Microservices

• Infrastructure as Code

• Monitoring and Logging

• Communication and Collaboration

2. The Docker Technology

 Docker Client – Server Architecture

• Docker Server

Docker Daemon running on Docker Host

Also referred as Docker Engine

• Docker Client

CLI: $ docker build/pull/run

GUI: Kitematic

 Docker Fastest Growing Cloud Tech

 By 2020 %50 of global orgs use Docker

 Docker Hub Pulls: 2014:1M, 2015:1B, 2016:6B, 2017:24B

Docker Architecture

Docker on Linux and OSX

Docker on Windows

Docker on Windows

 Docker and Microsoft Bring Containers to Windows Apps

 All Windows Server 2016 and later versions come with
Docker Engine. Additionally, developers can leverage
Docker natively with Windows 10 via Docker Desktop
(Development Environment)

Docker Machine

 Docker Machine is a tool for provisioning and managing your
Dockerized hosts (hosts with Docker Engine on them).

 Typically, you install Docker Machine on your local system.
Docker Machine has its own command line client docker-
machine and the Docker Engine client, docker.

 You can use Machine to install Docker Engine on one or more
virtual systems. These virtual systems can be local (as when
you use Machine to install and run Docker Engine in
VirtualBox on Mac or Windows) or remote (as when you use
Machine to provision Dockerized hosts on cloud providers).

 The Dockerized hosts themselves can be thought of, and are
sometimes referred to as, managed “machines”.

Docker Machine

Docker Machine

Docker EE

 Docker Enterprise 2.1 is a Containers-as-a-Service (CaaS)

 The default Docker Enterprise installation includes both
Kubernetes and Swarm components across the cluster

3. Installation

 Install Docker for Windows

• https://docs.docker.com/desktop/install/windows-install/

 Docker Desktop for Windows

• Docker Desktop is a new visual tool and available with all
OS types (Windows, Mac, Linux)

• On windows you may select two alternatives as backend

WSL2: Windows Subsystem for Linux. This is our choice

Hyper-V: Not friendly with Virtualbox. Hyper-V support
on Virtualbox experimental.

• You need Windows 10 or Windows Server 2016 to install
Docker Desktop for Windows.

https://docs.docker.com/desktop/install/windows-install/

Install Docker on Linux

 Ubuntu
• https://docs.docker.com/engine/install/ubuntu/

 CentOS/Rocky
• https://docs.docker.com/engine/install/centos/

• Add Docker repo and Install Docker CE

yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce

systemctl enable --now docker

• Postinstall Tasks for Linux: Create a Docker User

groupadd docker; sudo usermod -aG docker $USER

• Logout and Login again and test docker

$ docker version; docker run hello-world

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/centos/
https://download.docker.com/linux/centos/docker-ce.repo

Docker Compose

 Compose is a tool for defining and running multi-
container Docker applications. With Compose, you use a
YAML file to configure your application’s services.

 Install Docker Compose on Linux

• Docker Compose already installed for Docker Desktop

• On Linux manually install

• https://docs.docker.com/compose/install/#install-
compose

yum update

yum install docker-compose-plugin

$ docker compose version

https://docs.docker.com/compose/install/#install-compose

4. Using Containers

 Check Docker Server (Engine, Daemon) Running

• docker version

• docker-compose version (New docker compose)

• docker run hello-world

• docker run -d -p 80:80 docker/getting-started

 How to get help on commands

• https://docs.docker.com/

 New style 2017: Management Commands

• docker run vs. docker container run

• docker ps vs. docker container ls

https://docs.docker.com/

Image vs. Container

 An Image is the application we want to run

 A Container is an instance of that image running as a
process

 You can have many containers running off the same
image

 How to get images?

• Default image registry is called Docker Hub

 Containers aren’t Mini-VM’s. They are just processes

 Limited to what resources they can access (file paths,
network devices, running processes)

 Exit when process stops

Start a Simple Web Server

 Let's start a simple web server nginx as container

docker container run --publish 80:80 nginx

• First look for the nginx image locally

• if not found pull from Docker Hub

• Start nginx and open port 80 on the host

• Routes traffic to the container IP on port 80

• Start a firefox and check localhost, refresh couple of
times

• if you have bind error => Apache or another Web
Server running. Stop & Disable with systemctl or
choose another port on the host like --publish 8080:80

Nginx Lab

 Now nginx running on the foreground and displaying logs on
the terminal. Let's run it on the background
• Hit Control-c
docker container run --publish 80:80 --detach nginx
• Now running at background, unique Container ID
• Check running containers
docker ps (Old way)
docker container ls (New way)
• Notice random funny names at the end, we can specify

names too. Now stop nginx
docker container stop <ID> or <Name>
docker container ls (No running containers)
docker container ls -a (Running and Stopped containers)

Nginx

 Let's start a new container and give name "webhost"

docker container run --publish 80:80 --detach --name
webhost nginx

docker container ls -a (Show both running and stopped)

• Start firefox and refresh couple of times

• Now let's check logs generated from container

docker container logs webhost

• Check running processes on "webhost" container

docker container top webhost

• Clean everything. All running and stopped containers

docker container rm <ID> (Add -f option to force)

Docker Internals

 How Dockers implemented on Linux?

• Docker uses several Linux kernel properties like
namespaces, cgroups, and UnionFS

Docker Internals

 Docker Engine uses the following namespaces on Linux:
• PID namespace for process isolation.
• NET namespace for managing network interfaces.
• IPC namespace for managing access to IPC resources.
• MNT namespace for managing filesystem mount points.
• UTS namespace for isolating kernel and version

 Docker Engine uses the following cgroups:
• Memory cgroup for managing accounting, limits and notifications.
• HugeTBL cgroup for accounting usage of huge pages by process group.
• CPU group for managing user / system CPU time and usage.
• CPUSet cgroup for binding a group to specific CPU. Useful for real time

applications and NUMA systems with localized memory per CPU.
• BlkIO cgroup for measuring & limiting amount of blckIO by group.
• net_cls and net_prio cgroup for tagging the traffic control.
• Devices cgroup for reading / writing access devices.
• Freezer cgroup for freezing a group. Useful for cluster batch scheduling,

process migration and debugging without affecting prtrace.

Optional - Start and Inspect 3 Containers

 Start an nginx, a mysql, and a httpd (apache) server
• Use logs, inspect, and stats to check details
docker container inspect <Name>
docker container logs <Name>
docker container stats (Like top utility)

 Run all of them --detach (or -d), name them with --name
 nginx should listen on 80:80, httpd on 8080:80, mysql on

3306:3306
 When running mysql, use the --env option (or -e) to pass in

MYSQL_RANDOM_ROOT_PASSWORD=true
 Use docker container logs on mysql to find the random password

it created on startup
 Use docker container ls to ensure everything is correct
 LAB: Write a shell script to stop and remove all containers

Shell Access to Container

 How to get a shell access to containers, using ssh?

• Each container starts with a default command and
stops when that command exists, you can change it

• Also you can use -i -t to get an interactive shell

• Use exec to run additional command on any started
container

docker container run -d -p 80:80 --name ng nginx

docker container exec -it ng bash

docker container top ng (you will see nginx and bash processes)

• LAB: Change index.html file and reload firefox to reflect changes

Shell Access Examples

 Let's start a Ubuntu Container with an interactive shell
• Note that default command for Ubuntu is already bash
docker container run -it --name ubuntu ubuntu bash
apt-get update
dpkg -l | grep curl
apt-cache search curl
apt-get install curl
curl www.google.com
exit

• Now how to start and re-connect to it?
docker container ls -a
docker container start -ai ubuntu

 Also there is another mini-Linux distro called alpine ~5mb size!
docker container run -it --name alpine alpine bash (No Bash!)
docker container run -it --name alpine alpine sh

http://www.google.com/

5. Docker Networks

 Network Types

• bridge: The default network driver. If you don’t specify a
driver, this is the type of network you are creating

• host: For standalone containers, remove network isolation
between the container and the Docker host, and use the
host’s networking directly

• none: For this container, disable all networking

• overlay: Overlay networks connect multiple Docker
daemons together and enable swarm services to
communicate with each other. You can also use overlay
networks to facilitate communication between a swarm
service and a standalone container, or between two
standalone containers on different Docker daemons

Bridge Network

 Each container connected to a private virtual network "bridge"

 Each virtual network routes through NAT firewall on host IP

 All containers on a virtual network can talk to each other w/o -p

 Best practice is to create a new virtual network for each app:

Best Practice

 Default network is "bridge" for all created container

 Inside of the bridge network container can see each other

 However best practice is to create a new virtual network for
the containers that needs to work together. There could be
couple of seperated virtual networks. These networks are
isolated and containers see each other over open ports

 Using a seperate virtual network has advantages. One of
them is automatic DNS service. Each container within the
same network can see each other with names instead of IP
address, which is recommended way of operating since IP
addresses can be changed frequently

Practice: Default Bridge Network

 Practice of using default bridge network
• Let's create an alpine container in detach mode
docker container run -dit --name alpine1 alpine ash
• alpine is a tiny linux distro, whenever we want to access it

use: docker attach alpine1 and Control-pq to detach again
• Now on another terminal attach and check IP
docker attach alpine1
ip a (You see default network IP 172.17.0.2)
• Create a second alpine and ping each other
docker container run -dit --name alpine2 alpine ash
docker attach alpine2
ip a
ping 172.17.0.2

Practice: Create New Virtual Network

 Check Network and Containers from Host Terminal
docker network ls
docker network inspect bridge
• Look at the Container Section you will see alpine1,2 with IP

addresses. Now create a new net: "alp-net" and alpine3
container on this net

docker network create --driver bridge alp-net
docker network ls
docker container run -dit --name alpine3 --network alp-net
alpine ash
docker network inspect alp-net
docker attach alpine3
ifconfig (You will see new ip 172.18.0.x)

Practice: DNS on Virtual Network

 Now alpine1 and alpine2 on the default "bridge" and alpine3
on the alp-net. How to make alpine2 see alpine3? Create
another network interface for alpine2 on the alp-net

docker network connect --help

docker network connect alp-net alpine2

docker network inspect alp-net (See Container Section)

docker attach alpine2

ifconfig

ping 172.18.0.2 (alpine2 can ping alpine3 IP using alp-net)

ping alpine3 (DNS Service enables using hostnames)

ping alpine1 (DNS is not available for default bridge)

6. Docker Images

https://hub.docker.com/explore/

What is an Image?

 Official definition: "An Image is an ordered collection of
root filesystem changes and the corresponding
execution parameters for use within a container
runtime."

 Images are App binaries and dependencies

 Not a complete OS. No kernel, kernel modules

 Small as one file, Big as a CentOS Linux with yum, Nginx,
Apache, MySQL, Mongo, etc.

 Usually use a Dockerfile to create them

 Stored in your Docker Engine image cache

 Permanent Storage in Image Registry => hub.docker.com

Create a Docker ID

 Create a free account at https://hub.docker.com/ and
login, so you can create public repositories and only one
private repository. You can choose paid plans to have
more private repositories.

 Hit Explore to view official images. Official images have
approved by Docker Inc. with only names and "official"
tag. When you create an image, it should have
<your account name> /<repo name>

 Choosing the right image: Search for Nginx and choose
the image with "official" tag and lots of pulls and stars

 Goto Details and Check Tags. To ensure the current
version choose the "latest" tag which is default.

https://hub.docker.com/

Practice: Pull Images

 Let's pull different versions of Nginx from Docker Hub

• Check local nginx images first

• If you see latest tag rename it, otherwise overwritten!

docker image tag nginx:latest nginx:old

docker pull nginx (Pulls the tag:latest)

docker pull nginx:1.23 (Check the latest version)

docker image ls

• Notice the speed, not downloading everything

• Check image size are identical but not consume disk

Image Layers

 Images are made up of file system changes and
metadata

 Each layer is uniquely identified and only stored once on
a host using SHA and UnionFS (like zfs)

 This saves storage space on host and transfer time on
push/pull

 A container is just a single read/write layer on top of
image using COW

 Use docker image history and inspect to see details

docker image history nginx:latest

docker image inspect nginx:latest

Image Layers

Image Layers

Docker Image Upload

 How to tag and upload an image to Docker Hub?
• Use nginx image first tag and upload
docker image tag nginx tahsin42/mynginx (latest default)
docker image ls (Notice exactly same as official)
docker image push tahsin42/mynginx
• Denied! You need to login with free docker account
docker login => user/pass
• WARNING! Your password will be stored unencrypted in

/home/admin/.docker/config.json
• Don't forget to docker logout to remove credentials
docker image push tahsin42/mynginx
docker image tag nginx tahsin42/nginx:1.23
docker image push tahsin42/nginx:1.23 (Same image fast)

7. Dockerfile

 Dockerfile is recipe for creating Docker Image

 Dockerfile basics

• FROM (base image)

• ENV (environment variable)

• RUN (any arbitrary shell command)

• EXPOSE (open port from container to virtual network)

• CMD (command to run when container starts)

• docker image build (create image from Dockerfile)

Practice: Build Image from Dockerfile

 Let's create an image using a sample Dockerfile

cd dockerfile-sample-1

vim Dockerfile

docker build -t tahsin42/mynginx:2.20 .

• Order is important, try to make minimal changes, let's
edit Dockerfile and add port 8080 on EXPOSE

docker build -t tahsin42/mynginx:2.21 .

• Very Fast Deployment since everything else is ready

 You can also clone nginx source code from github and
build latest nginx version

Practice: Change index.html of Nginx

 Let's use the official nginx image and copy an index.html
to create our own image, push it to Docker Hub

cd dockerfile-sample-2

vim index.html (Change it as you like)

vim Dockerfile (You can see only index.html copies)

docker build -t tahsin42/mynginx:hello .

docker push tahsin42/nginx:hello

docker run -p 80:80 --rm nginx (Hit control-c, auto rm)

docker run -p 8080:80 --rm tahsin42/nginx:hello

8. Data Volumes and Bind Mounts

 Containers are usually immutable and ephemeral

 "immutable infrastructure": only re-deploy containers,
never change

 This is the ideal scenario, but what about databases, or
unique data?

 Docker gives us features to ensure these "separation of
concerns". This is known as "persistent data"

 Two ways: Volumes and Bind Mounts

• Volumes: Special location outside of container UFS

• Bind Mounts: Link container path to host path

Volumes vs. Mounts

 With Volume, a new directory is created within Docker's
storage directory on the host machine, and Docker manages
that directory's content.

 Volumes are easier to back up or migrate than bind mounts.
 You can manage volumes using Docker CLI commands or the

Docker API.
 Volumes work on both Linux and Windows containers.
 Volumes can be more safely shared among multiple

containers.
 Volume drivers allow you to store volumes on remote hosts

or cloud providers, to encrypt the contents of volumes, or to
add other functionality.

 A new volume’s contents can be pre-populated by a
container.

Bind Mounts

 With Bind Mount, a file or directory on the host machine is
mounted into a container. The file or directory is referenced
by its full or relative path on the host machine.

 Available since the early days of Docker.
 Bind mounts have limited functionality compared to

volumes. The file or directory does not need to exist on the
Docker host already. It is created on demand if it does not yet
exist.

 Bind mounts are very performant, but they rely on the host
machine’s filesystem having a specific directory structure
available.

 If you are developing new Docker applications, consider
using named volumes instead. You can’t use Docker CLI
commands to directly manage bind mounts.

Practice: Volumes

 Let's explore volume operations using mysql database

 First check stop and remove all containers and delete
existing volumes from previous work

myrm => docker container rm -f <ALL>

docker volume list

• if you ever run mysql there should be some
anonymous volumes left, since deleting a container do
not remove volumes. Default Location of volumes:
/var/lib/docker/volumes. Let's delete all for a fresh
start

docker volume prune

Practice: Volumes

 Goto Docker Hub and Check MySQL Dockerfile about volume
info => VOLUME /var/lib/mysql

 Create two a mysql container and check volume names

docker pull mysql

docker image inspect mysql (Check Volume)

docker container run -d --name mysql1 -e
MYSQL_ALLOW_EMPTY_PASSWORD=True mysql

docker volume ls

docker volume inspect (No info about container name)

docker container run -d --name mysql2 -e
MYSQL_ALLOW_EMPTY_PASSWORD=True mysql

docker volume ls (We have a problem, use named volumes)

Practice: Volumes

 Clean and create two new container with named volumes
myrm; docker volume prune
docker container run -d --name mysql1 \
-e MYSQL_ALLOW_EMPTY_PASSWORD=True \
-v mysql-db1:/var/lib/mysql mysql
docker container run -d --name mysql2 \
-e MYSQL_ALLOW_EMPTY_PASSWORD=True \
-v mysql-db2:/var/lib/mysql mysql
docker volume ls

 Now stop and remove mysql2 and create mysql3 with mysql-db2, since
volumes are not auto deleted with containers
docker container rm -f mysql2
docker container run -d --name mysql3 -e
MYSQL_ALLOW_EMPTY_PASSWORD=True \
-v mysql-db2:/var/lib/mysql mysql

Practice: Bind Mount

 Clean all and create nginx1 and nginx2 containers

• For nginx1 -p 80:80 manually connect to container and
edit index.html

• For nginx2 -p 8080:80 create a bind mount from host
to container and change index.html see result

docker container run -d --name nginx1 -p 80:80 nginx

• Open browser on localhost and see test page

docker container exec -it nginx1 bash

echo '<h1>Welcome to Mars!</h1>' >
/usr/share/nginx/html/index.html

• Reload the browser

Practice: Bind Mount

 Create bind mount from host to nginx2 to achieve same
thing w/o login into container

cd dockerfile-sample-2

docker container run -d --name nginx2 -p 8080:80 -v
$(pwd):/usr/share/nginx/html nginx

echo '<h1>Welcome to Venus!</h1>' > index.html

• Open browser http://localhost:8080

echo '<h1>Welcome to Jupiter!</h1>' >> index.html

• Reload browser. Very effective!

• However Host specific and can not specify in
Dockerfile

9. Docker Compose

 What is it? Why do we need it?
• Standalone Container App is not a real world scenario
• You need many Containers working together
• How do we specify all details about configurations, volumes,

networks, etc.? Obviously not with the command line docker
options

• Docker Compose comes into act right there
 Docker compose consist of two parts:

• YAML-formatted file that describes our solution options for:
Containers, networks, volumes

• A CLI tool docker-compose used for local dev/test automation
with those YAML files

 You need to install Docker Compose on Linux seperately
• https://docs.docker.com/compose/install/#install-compose

YAML

 YAML: YAML Ain't Markup Language => http://yaml.org

 What It Is: YAML is a human friendly data serialization
standard for all programming languages

 Default name for Docker: docker-compose.yml

• if you want use other names you need -f options with
docker-compose command. Similar idea with
Dockrfile and docker build command

 In terms of YAML versions definetely use v2 or higher

 docker-compose.yml can be used with docker directly in
production with Swarm (as of v1.13)

docker-compose CLI

 Docker-compose CLI tool comes with Docker Desktop, but
separate download for Linux and not a production tool but
ideal for local development and test. Not in SWARM mode.

 Two most common commands are

• docker-compose up # ssetup volumes/networks and start
all containers

• docker-compose down # stop all containers and remove
containers/volumes/networks

 Compose can also build your custom images

• Will build them with docker-compose up if not in cache

• Also rebuild with docker-compose up --build

Template YAML File

version: '3.1' # if no version is specificed then v1 is assumed. Recommend
v2 minimum

services: # containers same as docker run
servicename: # a friendly name. this is also DNS name inside network

image: # Optional if you use build:
command: # Optional, replace the default CMD specified by the image
environment: # Optional, same as -e in docker run
volumes: # Optional, same as -v in docker run

servicename2:

volumes: # Optional, same as docker volume create

networks: # Optional, same as docker network create

Sample YAML File

version: '2'

services:

wordpress:

image: wordpress

ports:

- 8080:80

environment:

WORDPRESS_DB_HOST: mysql

WORDPRESS_DB_NAME: wordpress

volumes:

- ./wordpress-data:/var/www/html

mysql:

image: mariadb

environment:

MYSQL_ROOT_PASSWORD: examplerootPW

MYSQL_DATABASE: wordpress

volumes:

- mysql-data:/var/lib/mysql

volumes:

mysql-data:

Practice1: Create a docker-compose.yml

 Goal: Create a compose config for a local Drupal CMS
website

 This empty directory is where you should create a docker-
compose.yml

 - Use the `drupal` image along with the `postgres` image
 - Set the version to 2
 - Use `ports` to expose Drupal on 8080
 - Be sure to setup POSTGRES_PASSWORD on postgres image
 - Walk though Drupal config in browser at

http://localhost:8080
 - Tip: Drupal assumes DB is localhost, but it will actually be

on the compose service name you give it
 - Use Docker Hub documentation to figure out the right

environment and volume settings

Practice1: docker-compose.yml

version: '2'

services:
drupal:

image: drupal
ports:

- "8080:80"
volumes:

- drupal-themes:/var/www/html/themes
postgres:

image: postgres
environment:

- POSTGRES_PASSWORD=mypasswd
volumes:

drupal-themes:

Practice2: Docker Compose Build

 In YAML file you can specify build if you want to create your own images. Here is an
example: Goto Practice2 folder:

cat docker-compose.yml
version: '2'
services:

proxy:
build:

context: .
dockerfile: nginx.Dockerfile

ports:
- '80:80'

web:
image: httpd
volumes:

- ./html:/usr/local/apache2/htdocs/
cat nginx.Dockerfile
FROM nginx:1.13
COPY nginx.conf /etc/nginx/conf.d/default.conf
docker-compose up and docker-compose down --rmi local

10. Swarm

 How do we automate container lifecycle?

 How can we easily scale up/down?

 How can we ensure our containers are re-created if they
fail?

 How can we replace containers without downtime
(blue/green deploy)?

 How can we control/track where containers get started?

 How can we create cross-node virtual networks?

 How can we ensure only trusted servers run our
containers?

 How can we store secrets, keys, passwords and get them
to the right container (and only that container)?

Swarm Mode: Built-In Orchestration

 Swarm Mode is a clustering solution built inside Docker

 Not related to Swarm "classic" for pre-1.12 versions

 Added in 1.12 (Summer 2016) via SwarmKit toolkit

 Enhanced in 1.13 (January 2017) via Stacks and Secrets

 Not enabled by default, new commands once enabled

• docker swarm, docker node, docker service

• docker stack, docker secret

 docker swarm init => Enabled! What Happened?
• Lots of PKI and security automation, Root Signing Certificate created

for our Swarm, Certificate is issued for first Manager node

• Join tokens are created, Raft database created to store root CA,
configs and secrets, Encrypted by default on disk (1.13+)

• No need for another key/value system to hold orchestration/secrets,
Replicates logs amongst Managers via mutual TLS in "control plane"

Manager and Worker Nodes

Nodes and Raft

Swarm Service

Docker Swarm

Practice: Enable Swarm in Single Node

 Check Swarm status and enable
docker info | grep -i swarm (inactive)
• Enable swarm
docker swarm init (Error: Multiple interfaces, select one)
docker swarm init --advertise-addr 192.168.56.111
• Success => Swarm initialized: current node

(oz14e3meqzbwfdgtja3hh01sp) is now a manager.
• To add a worker to this swarm, run the following

command:
docker swarm join --token SWMTKN-1-
2tlp9h62eqmendsqhm05f137w68jgwaeje66w2patt8gnd17b
0-0blsc43iaemb6w9u6871sxhes 192.168.56.111:2377
• To add a manager to this swarm, run 'docker swarm join-

token manager' and follow the instructions.

Practice: Single Node Swarm

 Check nodes
docker node ls (One node, manager => Leader)

 docker service create replaces docker container run in swarm
mode
• Create a service alpine, name it "homer", single replica
docker service create --name homer alpine ping 8.8.8.8
docker service ls
• Service "homer" is running with only 1 replica
• Use docker service ps to get which node it is running
docker service ps homer
docker container ls
docker container logs <container-name>
docker service logs <service-name>

Practice: Single Node Swarm

 Now, make it 3 replicas
docker service update --replicas 3 homer
docker service ls (Check all up: 3/3)
docker service ps homer (Which is running on which)

 Let's remove one container manually with docker container
rm -f and see if swarm re-creates
docker container ls
docker container rm -f
docker service ls (if you don't see, give a little time)

 Remove service, see all 3 containers removed
docker service rm homer
docker service ls
docker container ls

How to Create Multi-Node Swarm?

 A. play-with-docker.com

• Only needs a browser, but resets after 4 hours

 B. Local install with docker-machine + VirtualBox

• Free and runs locally, but requires a machine with 8GB
memory

 C. Digital Ocean /AWS/Google Cloud + Docker install

• Most like a production setup, but costs monthly

 D. Create your own on the Cloud with docker-machine

• docker-machine can provision machines for Amazon,
Azure, Google

Practice: Multi Node Swarm

 Goto https://labs.play-with-docker.com/
 Spin-up 3 machines: node1, node2, node3
 Login node1 and ping others

ping <node2-ip>
docker info | grep -i swarm
docker swarm init
docker swarm init --advertise-addr 192.168.0.43

 On Node2 and join as worker (Later we will convert to
Manager if we want)
docker swarm join --token SWMTKN-1-
0xb15jzxv2zvp45d9mrbvmnvnlf9zs9h2nxqone5tqjb5uvmte-
2q1e92xf2mvwdzjyk5keuicmc 192.168.0.43:2377

 On node1 run: docker node ls (node1 is manager:leader and
node2 is worker)

https://labs.play-with-docker.com/

Practice: Multi Node Swarm

 On Node1: Promote node2 as Manager

docker node update --role manager node2

docker node ls (Reachable)

 Add Node3 as Manager directly

• On Node1: docker swarm join-token manager

• On Node3: docker swarm join --token SWMTKN-1-
0xb15jzxv2zvp45d9mrbvmnvnlf9zs9h2nxqone5tqjb5u
vmte-2j66b6wafcym7p6uotgashohv
192.168.0.43:2377

• On Node1: docker node ls (Node3 also reachable)

Practice: Multi Node Swarm

 Create a service again with alpine and 3 replicas
docker service create --name homer --replicas 3 alpine ping
8.8.8.8
docker service ls
docker node ps [node2]
docker service ps homer (To see containers on nodes)

 On node2 remove container, check recovery
docker container ls
docker container rm -f <name>

 On node1 check service and remove
docker service ls
docker service update --replicas 5 homer
docker service ps homer
docker service rm homer

Appendix A. Swarm Network

 Overlay Multi-Host Networking

• Just choose --driver overlay when creating network

• For container-to-container traffic inside a single Swarm

• Optional IPSec encryption on network creation

• Each service can be connected to multiple networks

 Routing Mesh

• Routes ingress (incoming) packets for a Service to
proper Task

• Spans all nodes in Swarm

• Uses IPVS from Linux Kernel

• Load balances Swarm Services across their Tasks

Overlay Network

Routing Mesh

 This works Two ways:

• Container-to-container in a Overlay network (uses VIP)

• External traffic incoming to published ports (all nodes
listen)

 This is stateless load balancing

 This LB is at Layer 3, not Layer 4

 Both limitation can be overcome with:

• Nginx or HAProxy LB proxy, or:

• Docker Enterprise Edition, which comes with built-in
L4 web proxy

Practice: Overlay Network

 Create an overlay network "mydrupal" and start 2 service: drupal
and postgres. After you start check on all: curl http://localhost

docker network create --driver overlay mydrupal
docker network ls
docker service create --name psql --network mydrupal -e
POSTGRES_PASSWORD=mypass postgres
docker service ls
docker service ps psql
docker container logs psql<Tab>
docker service create --name drupal --network mydrupal -p 80:80
drupal
docker service ls
docker service ps drupal
docker service inspect drupal

Practice: Routing Mesh

 Create a search app elasticsearch 3 replicas, each
container has different initial string. Run curl
http://localhost:9200 on different nodes. Observe it
doesn't matter which node you run, always load
balancing on existing nodes

docker service create --name search --replicas 3 -p
9200:9200 elasticsearch:2

docker service ps search

Node2> curl http://localhost:9200

Node3> curl http://localhost:9200

Node1> watch curl http://localhost:9200

http://localhost:9200/
http://localhost:9200/
http://localhost:9200/
http://localhost:9200/

Appendix B. Stack and Secret

 In 1.13 Docker adds a new layer of abstraction to Swarm
called Stacks

 Stacks accept Compose files as their declarative
definition for services, networks, and volumes

 Use docker stack deploy rather then docker service
create

 Stacks manages all those objects for us, including overlay
network per stack.

 New deploy: key in Compose file. Can't do build:

 Compose now ignores deploy:, Swarm ignores build:

 docker-compose cli not needed on Swarm server

Docker Stack vs Docker Compose

 Conceptually, both files serve the same purpose - deployment and
configuration of your containers on docker engines.

 Think docker-compose for developer tool on your local machine and docker
stack as deployment tool on Swarm.

 Docker-compose tool was created first and its purpose is "for defining and
running multi-container Docker applications" on a single docker engine.

 You use docker-compose up to create/update your containers, networks,
volumes and so on.

 Where Docker Stack is used in Docker Swarm (Docker's orchestration and
scheduling tool) and, therefore, it has additional configuration parameters (i.e.
replicas, deploy, roles) that are not needed on a single docker engine.

 The stack file is interpreted by docker stack command. This command can be
invoked from a docker swarm manager only

 Specify a group of Docker containers to configure and deploy two ways:
• Docker compose (docker-compose up)
• Docker swarm (docker swarm init; docker stack deploy --compose-file

docker-stack.yml mystack)

Stack

Secret Storage

 Easiest "secure" solution for storing secrets in Swarm
 What is a Secret?

• Usernames and passwords
• TLS certificates and keys
• SSH keys
• Supports generic strings or binary content up to 500kb

 As of Docker 1.13.0 Swarm Raft DB is encrypted on disk
 Only stored on disk on Manager nodes
 Default is Managers and Workers "control plane" is TLS +

Mutual Auth
 Secrets are first stored in Swarm, then assigned to a

Service(s)
 Only containers in assigned Service(s) can see them

Practice: Secrets

 Let's create secrets on the command line for postgres service and then
do the same for stack in the yaml file. Do it on the swarm manager
node.
• Two ways to create: Use file or command line
echo "mypsqluser" > psql_user.txt
docker secret create psql_user psql_user.txt
echo "mysecretpass123" | docker secret create psql_pass -
docker secret ls
docker secret inspect psql_user
docker service create --name psql --secret psql_user --secret psql_pass
-e POSTGRES_PASSWORD_FILE=/run/secrets/psql_pass -e
POSTGRES_USER_FILE=/run/secrets/psql_user postgres
docker service ps psql (Learn node and docker container ls)
docker exec -it psql.1.<CONNAME> bash
cat /run/secrets/psql_user; cat /run/secrets/psql_pass; exit
docker service rm psql

Practice: Secrets

 Now let's copy docker-compose.yml psql_password.txt
psql_user.txt to one of the manager node with drag and drop

version: "3.1"
services:
psql:
image: postgres
secrets:
- psql_user
- psql_password

environment:
POSTGRES_PASSWORD_FILE: /run/secrets/psql_password
POSTGRES_USER_FILE: /run/secrets/psql_user

secrets:
psql_user:
file: ./psql_user.txt

psql_password:
file: ./psql_password.txt

Practice: Secrets

 Now we can deploy our db service with stack using
secret. Note that we need to use yaml version 3.1 for
secrets. Also for stacks version should be at least 3.

docker stack deploy -c docker-compose.yml mydb

docker secret ls

docker stack ls

docker service ls

docker service ps mydb_psql

docker stack rm mydb

Practice: Voting App Stack Example

 Let's create and run full swarm stack app designed as an example
by Docker. You can check details:

https://github.com/dockersamples/example-voting-app

 First open https://labs.play-with-docker.com/ and create 5 node
Managers using template just to avoid manual swarm setup we
have done earlier

 On Manager1 explore Swarm and Copy voting.yml file from your
local machine to Manager1 with Drag and Drop

cat voting.yml

docker node ls

docker service ls

docker stack ls

docker stack deploy -c voting.yml voteapp

https://github.com/dockersamples/example-voting-app
https://labs.play-with-docker.com/

Practice: Voting App Stack Example

Practice: Voting App Stack Example

 On Manager1 explore voting app

• First you see ports running 5000, 5001, 8080

• Open Chrome first on 5000 to vote

• Check result on 5001. Open firefox and vote again

• Finally look 8080 visualizer to see which service is running on
which node

docker stack ls

docker stack ps voteapp

docker stack services voteapp

docker network ls

• Now change voting.yml and change vote replicas to 5. Deploy
again (it will update) Finally look at the visualizer

docker stack deploy -c voting.yml voteapp

Appendix C. Kubernetes

 Greek for pilot or Helmsman of a ship

 Project started at Google as an open

source container orchestration platform

 Successor of Borg and Omega projects created at
Google.

 All services within Kubernetes natively Load Balanced

 Autoscale Workloads

 Blue/Green Deployments

 Released v1.0 at July 2015. Cloud Native Computing
Foundation (CNCF) serves as the vendor-neutral home
for many of the projects on GitHub, including
Kubernetes, Prometheus and Envoy

Kubernetes - Key Concepts

Kubernetes - Key Concepts

 kubectl
• Command-line program for interacting with the Kubernetes API,

to control the Kubernetes cluster
 Master Node

• The main machine that controls the nodes
• Main entrypoint for all administrative tasks
• It handles the orchestration of the worker nodes

 Worker Node
• It is a worker machine in Kubernetes (used to be known as

minion)
• This machine performs the requested tasks. Each Node is

controlled by the Master Node
• Runs containers inside pods
• This is where the Docker engine runs and takes care of

downloading images and starting containers

Kubernetes - Key Concepts

 Kubernetes Pod
• A Pod can host one (or more) containers
• Pods are smallest deployable units in Kubernetes that can

be created scheduled and managed.
• Pods are scheduled to Nodes. Pod contains containers and

volumes. Containers in a same Pod share the same
network namespace and can communicate with each other

• Pods are instances of Deployments. One Deployment can
have multiple pods

• With Horizontal Pod Autoscaling, Pods of a Deployment
can be automatically started and halted based on usage

• Each Pod has its unique IP Address within the cluster
• Any data saved inside the Pod will disappear without a

persistent storage

Kubernetes - Key Concepts

 Service:

• A service is responsible for making our Pods discoverable
inside the network or exposing them to the internet

• A Service identifies Pods by its LabelSelector

 Deployment

• A deployment is a blueprint for the Pods to be create

• Handles update of its respective Pods.

• A deployment will create and keep the Pods running and
update them by it’s spec from the template.

• Pod(s) resource usage can be specified in the deployment.

• Deployment can scale up replicas of Pods.

Kubernetes - Architecture

Control Plane Components

 kube-apiserver
• Provides a forward facing REST interface into the kubernetes control plane

and datastore. All clients and other applications interact with kubernetes
strictly through the API Server

 etcd
• etcd acts as the cluster datastore.
• Purpose in relation to Kubernetes is to provide a strong, consistent and

highly available key-value store for persisting cluster state.
 kube-controller-manager

• Serves as the primary daemon that manages all core components.
• Monitors the cluster state via the apiserver and steers the cluster towards

the desired state
 cloud-controller-manager

• Runs controllers that interact with cloud providers. Think cloud interface
 kube-scheduler

• Selects the Nodes for new Pods

Node Components

 kubelet
• Acts as the node agent responsible for managing the lifecycle of

every pod on its host.
• Kubelet understands YAML container manifests that it can read

from several sources:
File path, HTTP Endpoint, etcd

 kube-proxy
• Manages the network rules on each node.
• Performs connection forwarding or load balancing for

Kubernetes cluster services.
 Container Runtime Engine

• A container runtime is a CRI (Container Runtime Interface)
compatible application that executes and manages containers.

• Containerd (docker)

