
PYTHON 3
Programming LanguageKnowledge Club

Course Content

 Introduction
 Numeric Data Types
 Strings
 Assignments and if
 Loops
 Functions
 Lists and Tuples
 Dictionaries
 Files and Exceptions
 Object Oriented Programming
 Regular Expressions
 Advanced Topics

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

Introduction

 What is Python?

• General-purpose Programming Language commonly
known as object-oriented scripting language
Supports both procedural and object-oriented
programing

 Who is the creator?

• Guido van Rossum – Dutch,1956

Python - 1989 GPL Licenced

Inspired by Monty Python a comedy

show on BBC 1970s

Philosophy

 What is the philosophy? Python Enhancement Proposals
(The Zen of Python – PEP20)
• Beautiful is better than ugly
• Explicit is better than implicit
• Simple is better than complex
• Complex is better than complicated
• Readability counts

 Python vs. Perl
• The short story is this: you can do everything in Python

that you can in Perl, but you can read your code after
you do it

Who Uses Python?

 Google, Facebook, Instagram, Spotify, Quora, Netflix, Dropbox, Reddit, Pixar
 Machine Learning and Cloud Technologies extensively uses Python for projects
 The popular YouTube video sharing service is largely written in Python.

 The Dropbox storage service software primarily in Python.

 The Raspberry Pi computer promotes Python as its educational language

 The widespread BitTorrent peer-to-peer file sharing system starts as Python

 Industrial Light & Magic, Pixar use Python in the production of animated
movies.

 Intel, Cisco, HP, Seagate, Qualcomm, and IBM use Python for hardware testing

 JPMorgan Chase, UBS, Getco, and Citadel apply Python to financial market
forecasting.

 NASA, Los Alamos, Fermilab, JPL use Python for scientific programming

 The NSA uses Python for cryptography and intelligence analysis

 iRobot uses Python to develop commercial and military robotic devices

IDE

 Which IDE should I use?

• IDLE (Default)

• Pycharm, PyDev, Komodo, Wing

• Anaconda distribution including Spyder IDE,

jupyter-notebook, and other tools and libraries

 Installation of Python on Windows & Linux

• Download for Windows, already installed for Linux

• Check version on Linux by $ python -V

• Install version 3 by yum or zipped source files via:
https://www.python.org/downloads/source/

Python Version 2 vs. 3

 Python 3.0 was released in 2008. The final 2.x version
2.7 release came out in mid-2010 and retired 2020.

 Python 3.4 in 2014, 3.5 in 2015, and 3.6 in 2016
December, 3.7 2018 June. Python 3.7.4 July 8, 2019 and
3.6.9 July 2, 2019. Python 3.8.1 Dec. 18, 2019.

 Check versions: https://www.python.org/downloads
 Stable Documentation: https://docs.python.org/3
 What's new? https://docs.python.org/3/whatsnew
 PEPs: https://www.python.org/dev/peps/
 Python Package Index: https://pypi.org/
 Python Relases: https://python-release-cycle.glitch.me/

Install Python and IDE on LINUX

 LAB: Install Python 3 and Pycharm and write Hello World
Program and test interactive shell

 Solution:

• Download Python 3 for Linux (Python 2 already
installed on Linux as /usr/bin/python)

https://www.python.org/downloads

Copy to Linux, unzip and follow README to install

• Download Pycharm Community Edition

https://www.jetbrains.com/pycharm/download

• Write Hello World with vi and run, also check shell

Install Python and Jupyter on Linux

 First check RHEL already have an older Python

• # python -V

 Copy new Python zip file under / and extract

 Follow README to install Python

• Before: yum install zlib-devel and openssl-devel

./configure; make; make test; make install

 Install ipython and jupyter using pip

pip list; pip install --upgrade pip

pip install ipython

pip install jupyter

Configure Python

 Which shell parameter is responsible to access python?

 Add /usr/local/bin to PATH

 Practice: Configure your machine so that when you run
python it calls 2.7 and when you run python3 it calls 3.6

(Create a symbolic link named python3)

• # env

• # echo $PATH

• # PATH=$PATH:/usr/local/bin

• Edit system-wide or user-specific initialization file to
make it persistent

First Python Program

 Edit hello.py

#!/usr/local/bin/python3

print('Hello World')

• $ chmod +x hello.py

• $./hello.py (One way to do it)

• $ python hello.py (Another way, what is the
difference?)

• $ python (Interactive Shell, use exit() to quit)

• If you installed another version of python change first
line e.g. #!/usr/local/bin/python3

Types of Quotes

 How do you add comments?
• Just use # as usual anywhere

 How about quotes? (Remember escape char is \)
• Single and Double Quotes have same effect

'This is a string'
“This is a string”
Raw input: r'C:\some\name'

• Triple Quotes: Strings containing more than one line
“””This is a
string”””

 LAB - Edit hello2.py that reads username from keyboard and say 'Hello
<NAME>. Wellcome to Python Class!'
• Use function input
• name = input('Enter your name ')
• print('Hello',name,'Welcome to Python Class!')

How Python Works?

 You only need to worry about your source code .py
 This text code is compiled into a byte-code which is machine-

independent and runs on PVM (Python Virtual Machine)
which is always present after installation, default CPython

 If you really want to see this byte-code use this
• $ pyhton3 -m py_compile hello2.py
• This will create __pycache__ folder and .pyc file

 This resembles Java codes and JVM. Actually you can even
create Python bytecode to be run on JVM using Jython.
Default is CPython.

 If you want to make Python even faster use PyPy which is a
JIT(Just in time compiler) compiles bytecode to machine code
realtime. Another alternative is Cython to speed up.

Naming Conventions

 A Python identifier is a name used to identify a variable, function, class,
module, or other object

 An identifier starts with a letter A to Z or a to z or an underscore (_) followed by
zero or more letters, underscores, and digits

 Naming convention for Python
• Class names start with an uppercase letter and all other identifiers with a

lowercase letter.
• Starting an identifier with a single leading underscore indicates by

convention that the identifier is meant to be private.
• Starting an identifier with two leading underscores indicates a strongly

private identifier.
• If the identifier also ends with two trailing underscores, the identifier is a

language-defined special name.
 Google Python Style Guide has the following convention

• package_name, module_name, ClassName, method_name, ExceptionName
• function_name, GLOBAL_CONSTANT_NAME, global_var_name,

instance_var_name, function_parameter_name, local_var_name

Data Representation - OOP

 Everything is object and no explicit type or variable declaration needed, all
dynamic

 Following steps reflect the operation of all assignments (a=42)
• Create an object to represent the value 42.
• Create the variable a. Link the variable a to the new object 42.
• Variables are entries in a system table, with spaces for links to objects.
• Objects are pieces of allocated memory, with enough space to represent the

values for which they stand.
• References are automatically followed pointers from variables to objects

 Automatic Memory Management (Garbage Collector)
• del <object> (Explicit Deletion)

 Here are the links for built-in functions, data types and modules
• https://docs.python.org/3/library/functions.html
• https://docs.python.org/3/library/stdtypes.html#
• https://docs.python.org/3/py-modindex.html

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

2. Numbers

 The principal built-in types are numeric, sequences, mappings, classes,
instances and exceptions

 Python has five standard data types
• Numbers
• String
• List
• Tuple
• Dictionary

 Built-in Constants
• True, False, None

 Type function
>>> type(3)
<class 'int'>
>>> type('hello')
<class 'str'>

Type Casting

Action Converting what to what

int() string, floaXng point → integer

float() string, integer → floaXng point number

str() integer, float, list, tuple, dicXonary → string

list() string, tuple, dicXonary → list

tuple() string, list → tuple

Basic Operators

 Basic Operators
• +,-,/,*,% and +=,*=,/=
• Exponentiation: **
• Floor division: // (Floor the value 3/2->1)

Note that standard division always result float! 4/2=2.0
 Bitwise Operators

• >>,<<,|(or),&(and),^(xor),~(not), bin(), oct(), hex()
 Logical Operators

• and, or, not
 Comparison

• >,<,>=,<=,==,!= (Like C)
 Others: in and not in  Sequence, is and is not  Object

Numeric Data Types

 Numeric Data Types

• int (Unlimited! Try >>>2**1000)

• float (Default Precision: 17)

• bool  True or False

• None type

• complex  2+3j

• If you want to get high precision with floating point
operation, consider using mpmath module.

Practice: Calculate (1 + 1/n) ^ n with high precision

Numeric Functions

 Standard Functions
• int(x) : Converts to integer (Truncates)
• str(), float(), list(), tuple(), set(), dict()
• round(x, 2) : Converts to float with precision 2
• min(), max(), sum(), len(), del(), id(), eval()

 import math
• math.e, math.pi
• math.exp(x), math.log(x), math.sqrt(x)

 import time
• time.sleep(0.5), time.ctime()

 import random
• random.random()
• random.randint(1, 6) -> Dice

LABS for Numbers

 LAB1: Write a Python Program that converts Fahrenheit
to Celcius. (Ask Fahrenheit value from keyboard)

• Use function -> input('Please enter Fahrenheit value: ')

• Casting needed? => int(),float(),str()

What is the return type of input() function?

 LAB2: Pisagor Triangle: Ask for sides of right triangle a
and b and calculate Hypotenuse c. (a² + b² = c²)

• How can you print less numbers? Lower precision.

Print functionality (See Appendix)

Round function

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

3. Strings

 Strictly speaking, strings are sequences of one-character
strings. Other sequence types include lists and tuples

 Practice
>>> S='Spam'
>>> len(S) -> 4 (Built-in)
>>> S[0] (First element)
>>> S[-1] or S[len(S)-1] (Last element)
>>> S[1:3] -> pa (Slice start at position 1 until 3)
>>> S[1:] -> pam (Start at 1st until end)
>>> S[-3:] -> pam (Last 3 chars)
>>> S+'xyz' -> Spamxyz (Concat)
>>> S * 3 -> SpamSpamSpam (Repetition)
>>> S=r'\temp\spam' (raw input no escape chars)

Strings are Immutable

 Strings are Immutable Objects

>>> S -> Spam

>>> S[0]='z' (Error! You can not change 1st element of S)

>>> S = 'z' + S[1:] (This is ok since new object created!)

>>> L = list(S) (Convert string to list, now you can change)

>>> L[0]='z' (['z', 'p', 'a', 'm')

>>> S = ''.join(L)

 Getting a list about string methods

>>> dir(S) (Assume S is a string. Ignore __ ones)

Strings

 Practice
• Printing string chars
>>> myjob = 'hacker'
>>> for c in myjob: print(c, end=' ') (No newline, space instead)
h a c k e r
• Extended Slicing
>>> S = 'abcdefghijklmnopqrstuvwxyz'
>>> S[1:10:2] (Start at position 1 go till 10 skip 2)
bdfhj
>>> S[::2] (Start beginning skip 2 till end)
acegikmoqsuwy
>>> S[::-1] (Reverse!)
zyxwvutsrqponmlkjihgfedcba

String Methods

 Find and Replace Methods
>>> S = 'I like tea. I drink at least five cups of tea daily'
>>> S.find('cups') -> 34 (Searches pa and finds at position 1)
>>> S.replace('tea','coffee')
>>> S (Immutable! Use S=S.replace('tea','coffee')

 upper(),lower(),isalpha(),isdigit(),endswith(),startswith()
>>> S.upper() -> SPAM
>>> S.lower() -> spam
>>> S.isalpha() -> True
>>> S.isdigit() -> False
>>> S.startswith('SP') -> True
>>> S.endswith('M') -> True

String Methods

 Split and Strip

>>> line = 'apple,orange,banana \n'

>>> line.rstrip()

'apple,orange,banana' # Removes right whitespaces

>>> new = line.rstrip().split(',')

['apple','orange','banana'] # First remove then split with ,

 ord and chr functions

>>> ord('\n') -> 10

>>> chr(65) -> 'A'

• Q: Print ASCII Table using for & chr

LAB – Generate Login Name

 Read users first_name, last_name, and number_id and
generate a Login Name with the following rule: Take first
3 chars from first_name + take first 3 chars from
last_name + take first number from id. Finally print a line
like 'Hello <first_name>. Your account is created with
<login_name> username and password. Please login and
change your password immediately.

 Bonus question: How can you check first & last name
contains only chars and id contains numbers?

 Bonus Lab: Take first 3 chars from first_name + take last
3 chars from last_name + take one random number from
id

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

4. if

 Conditions: Booelan: True/False
 Logical Operators: And/Or/Not. Comparisons: <,>,>=,<=,==,!=
 Syntax: if, if/else, nested if

if condition:
print('Ok')

else:
print('Not OK')

 What about more than one condition?
if condition1:

print('first')
elif condition2:

print('second')
else:

print('last')

LAB – Grades

 Write a Python Program that read users exam result
0-100 and prints it in terms of A,B,C,D, or F
• Grade A: 90-100, Grade B: 80-89
• Grade C: 70-79, Grade D: 60-69
• Grade F: 0-59 (Fail)

 Write a Python Program that reads two numbers a, b. If
a/b < 0.5 or b = 0 print Values Not Acceptable.

 Bonus Lab: Read a year from keyboard and print if that
year February has 28 or 29 days

 Python Info: Is there a case/switch statement in Python?
https://www.python.org/dev/peps/pep-3103/

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

5. Loops

 While Loop
while condition:

statement1
statement2

else: (Not needed)
 LAB - Counter

• Read an end number from the keyboard and print
numbers from 1 to end (1,2,3,4, … , end)

• Bonus: Add half a second intervals (Performance issue)
• Bonus Lab: Create a timer that counts down to zero on

the same spot. Add bell sound for the last 3 seconds!

For Loop

 For Syntax: for var in <list>:
>>> for fruit in ['apple','orange','banana']: print(fruit)
>>> for var in [1,2,3,4,5]: print(var)
>>> S = 'Lumberjack' ; T=('Once','upon','a','time')
>>> for x in S: print(x,end=' ') ---> L u m b e r j a c k
>>> for x in T: print(x,end=' ') ---> Once upon a time

 range() function (actually immutable sequence) is very useful to
create a number list
• range(5) ---> 0,1,2,3,4
• range(2,6) ---> 2,3,4,5
• range(1,9,2) ---> 1,3,5,7
• range(10,2,-2) ---> 10,8,6,4

 For both loops, you can use break and continue statements
• Practice: print 1..10 first. Then break at 5, or skip on 5.

5. Loop Labs
 LAB: Homogenous String. Read a string and check all

chars are the same or not
 LAB: Palindrome. Read a string and check if is it is a

palindrome
 LAB: Speed Test. Calculate the time to sum one millions

numbers in Python
 LAB: 3n+1 Problem. Play the game including the iteration

counter. Example: Initial Number is 5. (Game ends when
you hit 1). Try 97!
Example: 3 => 10 => 5 => 16 => 8 => 4 => 2 => 1 (Game
Over!)

 LAB: Read a password and check if it contains at least 1
upper, 1 lower, 1 digit and length is at least 8 to accept

5. Loop Labs
 BONUS LAB: Which number has the highest steps in

3n+1 game between 1..100?
 BONUS LAB: Calculate and print transcendental pi and e

numbers with online view. Show the real values with
math.pi, math.e
Use the following formulas:
e = 1 + 1/1 + 1/(1x2) + 1/(1x2x3) + 1/(1x2x3x4) + …
! = 4 x (1/1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 +- …) =>
Gregory-Leibniz Series (Slow)
! = 3 + 4/(2*3*4) - 4/(4*5*6) + 4/(6*7*8) - 4/(8*9*10) +
4/(10*11*12) - 4/(12*13*14) +- …) => Nilakantha (Faster
Convergence!)

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

6. Functions

 Defining a function
def my_function(n): # n is passing parameter

statements
return result

 Calling a function => my_function(n)
 Scope: Local vs. Global parameters

• All local within function unless global keyword used
var = 88 # Global var since in the main
def func():

global var
var = 99 # Global var: in effect outside def

func()
print(var) # Prints 99. Without global it should be 88

Scope

 Pass by value or Pass by reference?
def change(n): n=n+1
val = 1
print('Initial value is',val)
change(val)
print('New value is',val) # You Still get 1
(New reference created when function called to point same
object. However when you change n, another object created,
because of immutability)

 How can you change passing parameter? (Use return value)
 Avoid using global parameters as much as possible, create a

main function to navigate your program
 If you want to create a global constant parameter to share

among functions, just create a parameter outside functions

Function Return Values

 How to change passing values in functions?
def increment(n):

n = n + 1
number = 42
increment(number)
print(number)

 How can you get back multiple values from function?
def calc(a, b):

c = a + b; d = a * b
return c, d

total,mul = calc(7, 5)
 LAB: Write a factorial function

LAB - Fibonacci

 LAB: Write a Fibonacci Function and call from main script

Read the parameter n from user and pass it to function
Fibonacci(n). Try Fibonacci(1000)

Bonus: Print the ratio to show phi approximation and
Calculate and show phi mathematically: (1+sqrt(5))/2

 BONUS LAB: How to write a function that accept variable
number of inputs? Write a function called sigma that
adds any number of input float values

Recursion

 Recursive function is a function that calls itself

• Very useful to solve some problems

Binary Search, Quick Sort, Towers of Hanoi

• Should be careful about termination rule

Infinite recursion -> Stack Overflow!

 LAB: Write a recursive function to calculate n!

• n! = n x (n-1)!

• Termination rule: return 1 when you reach number 1

 BONUS LAB: Write Fibonacci Recursively

Random Number Functions

 Random module contains pseudo random generating
functions
• random.random() : Generates [0,1) float
• random.choice([1,2,3,4,5,6]) : Choose one of these
• random.choice(['apple','orange','banana'])
• Suit = ['spades','hearts','clubs','diamonds']

random.shuffle(Suit) ---> Suit is a list(Mutable)
• random.randint(1,6) : Generate 1,2,3,4,5,6
• random.randrange(0, 51, 10): Generates 10,20,30,40,50
• random.seed(5) : Use number 5 initialize pseudo random

number generator. Default is system time. Use this to get
exact same numbers. (Pseudo Random – Uses Formula)

LABS - Coin and Dice

 LAB: Play the number guessing game between 1..100

 LAB: Read the number from keyboard and toss the coin and
show online head and tails with one second intervals. Finally
state the result number of heads and tails

 LAB: Throw 2 dice and display output 5 3, 3 2, 1 5 etc.

If you throw same number like 5 5 then print lucky. If you
throw 6 6 then say winner and quit. Print counter and delay
one second between throws

 LAB: Write a is_prime() function which test if given number is
prime or not. (Check till sqrt(x))

• Bonus: Use is_prime and print first 100 prime numbers

• Bonus: Read a number and show prime factors. 6=2x3

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

7. Lists and Tuples

 Lists and Tuples are basic sequence types.
• Also Range is immutable sequence

 Main difference: list is mutable and tuple is immutable
 L = ['Alice','Bob',28,3.14] (List may contain different

types. This may be inefficient for large data => numpy)
 L = [0,5,10,15,20,25]
 L = list(range(0,30,5)) => Use list function to create list
 L * 5 ---> Repeats the elements of list 5 times!
 Process the list

for i in L:
print(i)

Lists

 INDEXING. 0 to len(L)-1. Process with while

index=0

while index<len(L):

print('Position',index,'Value',L[index])

index+=1

 SEARCHING with in

if 'Monday' in days:

print('Yes Monday is in the list')

Lists

 CONCAT
list1 = [1,2,3,4,5]; list2 = [6,7,8,9,10]
list3 = list1 + list2
list1 += list2

 SLICING
days =
['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday'
,'Saturday']
weekdays = days[1:6]
weekend = days[0]+days[-1]
list1 = days[:2] ---> ['Sunday','Monday']
list2 = days[4:] ---> ['Thursday','Friday','Saturday']
a,b,*c = days

List Methods

 append(item) Adds item to the end of the list
 insert(index, item) Inserts item into the list at the specified

index. The item that was previously at the specified index,
and all the items after it, are shifted by one position toward
the end of the list

 pop() Removes last element, or give index
 remove(item) Removes the first occurrence of item from the

list. A ValueError exception is raised if item is not found in
the list

 index(item) Returns the index of the first element whose
value is equal to item. A ValueError exception is raised if item
is not found in the list

 sort() Sorts the items in the list so they appear in ascending
order (from the lowest value to the highest value).

 reverse() Reverses the order of the items in the list.

List Methods

 Practice

>>> L = list(range(1,10))

>>> L.append(6)

>>> L.index(2)

>>> L.sort()

>>> L.reverse()

>>> L.insert(3,7) => Insert 7 at index 3

>>> L.pop() => Remove last item of list

>>> L.insert(0,13) => Insert 13 at the beginning

>>> L.remove(9) => Remove element 9 from the list

Built-in Functions

 del(List[1])
• L.remove(<item>) removes an item from the list
>>> L = [1,2,3,4,5,6,7,8,9]
>>> del(L[1])
>>> L.remove(4)
>>> L.pop(5)

 min(L), max(L), sum(L)
• Finds the min, max, and sum of a list
>>> min(L)
>>> max(L)
>>> sum(L)

List Copy

 How to copy a list?
>>> L = [1,2,3,4,5]
>>> A = L (This one creates another reference to the
same object. So no real copy here)
>>> A[0] = 7
>>> A; L => Both shows [7,2,3,4,5]
>>> B = [] => Now new object is created for B
>>> for item in L:

B.append(item)
>>> C = [] + L => This is nice and easy way to copy
>>> C = L.copy() => Same as above

Multi-dimensional Lists

 Create a matrix with 3 rows and 4 columns
>>> M = [[1,2,3,4],[2,4,6,8],[3,6,9,12]]
>>> M # Prints whole matrix
>>> for i in range(len(M)): # Processing Matrix
>>> for j in range(len(M[0])):
>>> print(M[i][j])

 Create a 3x5 multi-dimensional list within Python script
Table = [[1 for i in range(5)] for j in range(3)]
print(Table)
for d1 in range(3):

for d2 in range(5):
Table[d1][d2]= d1+d2

 Complex list, each item is another list: ['name','address','phone']
 Difference between sort() vs sorted() and reverse vs reversed()

Tuples

 A tuple is a sequence, like a list primary difference:
• Tuples are immutable syntax ()
• Lists are mutable syntax []

 Tuples support all the same operations as lists, except
those that change the contents
• Methods such as index, count
• Built-in functions such as len, min, and max
• Slicing expressions
• The in operator, The + and * operators

 Tuples do not support methods such as append, remove,
insert, reverse, and sort.

Tuples

 What's the point?
• One reason that tuples exist is performance
• Another reason is that tuples are safe (immutable)

 How can you convert between Tuples and Lists
• Use list() and tuple() functions
>>> T = (1,2,3,4,5)
>>> T[0] = 6 # You can not change a tuple
>>> L = list(T)
>>> L[0] = 6 # Now you can with a list
>>> T ; L
>>> new = tuple(L)

LABS - Lists

 Play Lottery Game: Generate 6 numbers 1..49, sort. Use set?
 Find the first 1000 prime numbers, use a list to store primes.

Efficiency test: Use sqrt and calculate the time difference.
 Create a playing deck using a list then ask user to pick a card.

Shuffle the deck and start showing the cards until you reach the
card.
Deck = ['1 of Hearts','2 of Hearts','3 of Hearts','4 of Hearts','5 of Hearts',
'6 of Hearts','7 of Hearts','8 of Hearts','9 of Hearts','10 of Hearts',
'Jack of Hearts','Queen of Hearts','King of Hearts',
'1 of Diamonds','2 of Diamonds','3 of Diamonds','4 of Diamonds','5 of Diamonds',
'6 of Diamonds','7 of Diamonds','8 of Diamonds','9 of Diamonds','10 of Diamonds',
'Jack of Diamonds','Queen of Diamonds','King of Diamonds',
'1 of Spades','2 of Spades','3 of Spades','4 of Spades','5 of Spades',
'6 of Spades','7 of Spades','8 of Spades','9 of Spades','10 of Spades',
'Jack of Spades','Queen of Spades','King of Spades',
'1 of Clubs','2 of Clubs','3 of Clubs','4 of Clubs','5 of Clubs',
'6 of Clubs','7 of Clubs','8 of Clubs','9 of Clubs','10 of Clubs',
'Jack of Clubs','Queen of Clubs','King of Clubs']

BONUS LAB - Complex Lists

 Create a list, reading from the keyboard in the
following manner:
• First ask name and read First and Last name as

string
• Second ask address and read whole address as a

single string
• Third ask phone numbers and read as many

phones as user supplies. User should enter all
phones in one line with comma separated
numbers

• Quit entering values when user give name as quit
 Print only names and primary phone number

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

8. Dictionaries and String Extras

 String operations. S = 'Spam'
• Iteration: for var in S:
• Indexing: S[0],…,S[-1] ---> S[-1] = S[len(S)-1]
• Slicing: S[:-1] # Just remove last char
• Concat: S = S+'hello' (Immutable, new string created)
• Check: if 'pam' in S: ---> Check if 'pam' is in the S
• Repetition: S = S * 3 ---> 'SpamSpamSpam'
• Split: L = S.split(':') ---> Split with : separator. L is a list.

Default separator is whitespace.
• Join: S = ' '.join(L) ---> Join a list into String with ' '
• Unicode string: S = u'Spam'

String Functions

 S.find('pa') -> 1 (Searches pa and finds at position 1)
 S.replace('pa','XYZ') -> SXYZm (S is not changed)
 S.upper() -> SPAM
 S.lower() -> spam
 S.isalpha() -> True
 S.isalnum() -> True
 S.isdigit() -> False
 S.isdecimal() -> False
 S.isspace() -> False
 S.startswith('Sp') -> True
 S.endwith('m') -> True
 S.rstrip(), S.lstrip(), S.strip()

LABS - Strings

 LAB: Arcan's Word Game. Ask user's first name and start
a game randomly generating all chars simultaneously
with the length of name. Stop when you reach the
original name. Show counter.

• Math Bonus: What is the probability of reaching arcan
at the first try?

• Math Bonus: How many steps needed to reach word
arcan with the probability of %99?

 LAB: Same problem like above but generate random
chars one by one. Show them sequentially, like slot
machine.

Dictionaries

 Dictionaries are basically key,value pairs and mutable
• Keys of dictionaries must be immutable types but

values can be any type: lists,tuples,strings, etc.
• Key,Value pairs not stored in particular order
• Keys are unique. You can not have same key twice!
• Values can be sequences like tuples!
>>> phonebook =
{'Gandalf':'05321234567','Saruman':'05421234567','Saur
on':'05051234567'}
>>> phonebook ---> Output may not in the same order
>>> phonebook['Gandalf']

Dictionaries

 How do you check if Gandalf exist before print?
>>> if 'Gandalf' in phonebook: print(phonebook['Gandalf'])

 How to add an element? (Dictionaries are mutable)
>>> phonebook['Frodo'] = '05551234567'

 How to delete an element?
>>> del(phonebook['Saruman'])

 Size of the phonebook?
>>> len(phonebook)

 How to create an empty dictionary?
>>> phonebook={}

 Iteration
>>> for key in phonebook:
>>> print(key,'--->',phonebook[key])

Dictionary Functions

 clear() Clears the contents of a dictionary

>>> phonebook.clear() ---> Empty {}

 get() Gets the value associated with a specified key. If
the key is not found, the method does not raise an
exception. Instead, it returns a default value

>>> number = phonebook.get('Saruman','Not here!')

 items() Returns all the keys in a dictionary and their
associated values as a sequence of tuples.

>>> for key, value in phonebook.items():

print(key, value)

Dictionary Functions

 keys() Returns all the keys in a dictionary as a sequence of tuples
>>> for key in phonebook.keys():

print(key,' ---> ',phonebook[key])
 pop() Returns the value associated with a specified key and

removes that key-value pair from the dictionary. If the key is not
found, the method returns a default value.
>>> number = phonebook.pop('Saruman','Not found!')

 popitem() Returns a randomly selected key-value pair as a tuple
from the dictionary and removes that key-value pair from the
dictionary.
>>> name,number = phonebook.popitem()

 values() Returns all the values in the dictionary as a sequence of
tuples.
>>> for val in phonebook.values():

print(val) ---> Only numbers

LAB – Exam Results

 Read math exam results from keyboard (or from a file) and create
a dictionary as keys:names and values:scores.
Stephen Hawking:95
Gary Kasparov:67
Albert Einstein:78
Paul Erdos:100
Pierre De Fermat:68
Cahit Arf:100
Paul Dirac:93
Alan Turing:95

 Write a Python program that prints following values:
• Total number of students, average, min and max scores
• You need to print all names if more than one person gets the

min or max score

BONUS LAB - Birthday

 LAB: Create a birthday dictionary by asking names and
birthdays in the following format:
Enter Name: Arcan
Enter Month: 8
Enter Day: 22
Another record? y/n:
• Print all names and birthdays in a format like above
• Read a month and print names who has a birthday in

that month
 Get the system date with datetime.date.today() and

check and congratulate the person who has birthday
today

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

9. Files and Exceptions

 Howto open a file?
f = open('fruit.txt','r')
• File object f created to access file fruit.txt
• Fruit.txt is in the home folder of this user, otherwise use

full path. Consider using r' ' raw string not to worry about
metachars

• Opening modes are
r – read-only default
w – write means create or overwrite if exist!
a – append if exists, or create if not
r+ – open read and write

• Default mode is string text, you can add b for byte mode

File Modes
Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the beginning of the file. This is the
default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates a new file for
writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does not exist,
creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If the file does not exist,
creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if the file exists. If the file
does not exist, creates a new file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists. That is, the file is in the
append mode. If the file does not exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if the file exists. That is, the
file is in the append mode. If the file does not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if the file exists. The file
opens in the append mode. If the file does not exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the end of the file if the file
exists. The file opens in the append mode. If the file does not exist, it creates a new file for reading and writing.

File Operations

 f.read() : Reads entire file into a single string
 f.readline(): Reads a line from the string. '' at the end
 f.readlines(): Reads all lines from file to a list
 for line in f: (This line processing memory efficient&fast)

print(line,end='')
 if you want to read all lines into a list use

• list(f) or f.readlines()
 f.write('This is a test\n') #Write to a file
 f.close() #Close
 f.flush() #Flush but not close
 f.seek(N,[0,1,2]) # Change position N item. 0 from beginning, 1 from current, 2

from end
 f.tell() # Current position in bytes
 open('f.txt',encoding='Latin-1')
 Preferred way of opening a file => Autoclose (No need for f.close())

with open('/usr/share/dict/words', 'r') as f:
data = f.readlines() # Reads all lines to data list at once

File and Directory Methods of OS Module

 Rename a file
• os.rename('test1.txt', 'test2.txt')

 Remove a file
• os.remove('test2.txt')

 Create a directory 'test'
• os.mkdir('test')

 Changing a directory to '/home/class'
• os.chdir('/home/class')

 Print Working Directory
• os.getcwd()

 Remove '/tmp/test' directory.
• os.rmdir('/tmp/test')

 Also use shutil module for file operations like copy,move, etc.

File LABS

 LAB: Create a file 'numbers.txt' and write 20 random
numbers between 1-100. Close the file then read and display
it. Write to 'numbers2.txt' file double the original numbers.

 LAB: Create fruit1.txt and fruit2.txt files manually, write a
Python script to show differences at lines one to one.

 LAB: Create an employee record file for the company. First
ask for the filename and enter employee data in the
following format: Employee ID, First and Last Name, and
Department Name. Use '0' for the Employee ID to terminate.
• For the above script, create a menu that can

search/add/delete/append/print employees. Search and
delete operations will be based on unique Employe_IDs.
Menu: (C)reate/(P)rint/(S)earch/(A)ppend/(Q)uit:

File Extra LABS

 BONUS LAB: Consider employee script. Read
company.txt file and convert the whole company data
into CSV format and write to file company.csv. Then read
it again using the csv module and just print names of
employees

 BONUS LAB: Consider you have a zipped file
numbers.txt.gz. How can you read and display this file?

 BONUS LAB: Read from a json file called distros.json and
print name values

 BONUS LAB: How to read and write data in Excel format?
Consider installing and using the openpyxl module

 BONUS LAB: How to read data in XML format?

Exception

 Exception is an error that occurs while a program is running
like division by zero. If you don't handle it in most cases
program halts

 List of exceptions
https://docs.python.org/3/library/exceptions.html

 Simple Code – E07_Exception1.py
#!/usr/local/bin/python3
a = int(input('First Number '))
b = int(input('Second Number: '))
c = a/b
print(a,'/',b,'=',c)
• Try b = 0 for this code

Handling Exception

 How can you handle this?
 You can change the program and check if b == 0 first

E07_Exception2.py
#!/usr/local/bin/python3
a = int(input('First Number '))
b = int(input('Second Number: '))
while b == 0:

print('You can not choose b equal to 0, try again!')
b = int(input('Second Number: '))

c = a/b
print(a,'/',b,'=',c)

Handling Exception

 You can not check all possible errors before it happens
• What is user enter strings instead of numbers?

 Therefore you can use catch structure if you suspect
some error for parts of you program
#!/usr/local/bin/python3
try:

a = int(input('First Number '))
b = int(input('Second Number: '))
c = a/b

except ZeroDivisionError:
print('Division by Zero! Be careful..')

Handling Multiple Exception

 Howto handle more than one type of exception?

try:

file = open('employee.txt','r')

a = int(input('First Number '))

b = int(input('Second Number: '))

c = a/b

except ZeroDivisionError:

print('Division by Zero! Be careful next time..')

except FileNotFoundError:

print('File does not exist! Check name/path')

Handling Multiple Exception

 Still we can create un-handled exception by entering string
values to a and b. How to handle all exceptions?
try:

file = open('employee.txt','r')
a = int(input('First Number '))
b = int(input('Second Number: '))
c = a/b

except ZeroDivisionError:
print('Division by Zero! Be careful next time..')

except except FileNotFoundError:
print('File does not exist! Check name/path')

except:
print('Enough is enough! Some other exception!')

Exception Extras

 How do you exit from Python?

import sys

sys.exit(3) -> 3 is error code, default is 0

 How can you run statements if exception did not occur?

try:

statements

exception:

statements

else:

statements # this only executed if no exception

Exception Extras

 Finally expression

try:

statements

exception:

statements

finally:

statements # This code is always executed

 Finally is created for clean-up purposes. So even you
want to exit with sys.exit(), finally statements still
executed!

Raise Exception

 How can you raise an exception?

a = 42 # if you set other than 42 no exception throws

try:

if a == 42:

raise ValueError('Apple')

print('Everything is ok.')

except ValueError as e:

print('There was an exception about Universe!')

print(e)

Custom Exception

 How can you create your own exception?
class MyException(Exception):

pass

a = -273
try:

if a == -273:
raise MyException('Zero Kelvin!','Freeze')

print('Everything is ok.')
except MyException as e:

print(e.args)

Assertion

 How can you create your own exception?

a = -1

try:

assert(a>0)

print('Everything is ok.')

except AssertionError as e:

print('Negative Value is not ok!')

 LAB: Read a value from keyboard and check if it is float

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

10. OOP Terminology

 Object: A unique instance of a class, contains both data and
methods

 Class: Prototype or blueprint for an object
 Instance: An individual object of a certain class
 Instantiation: The creation of an instance of a class
 Method : Function defined in class
 Class variable: A variable that is shared by all instances of a

class
 Instance variable: A variable that is defined inside a method

and belongs only to the current instance of a class (object)
 Function overloading: The assignment of more than one

behavior to a particular function. The operation performed
varies by the types of objects or arguments involved.

OOP Key Concepts

 Encapsulation: Binding (or wrapping) code and data together
into a single unit is known as encapsulation
• Employee class both contains data and methods

 Inheritance: One object acquires all the properties and
behaviors of parent object. It provides code reusability.
• Employee is a class
• Manager is a subclass of Employee inheriting all attributes

and methods
 Polymorphism: Polymorphism is the ability of an object to

take on many forms achieved by overriding and overloading
 Abstraction: Hiding internal details and showing

functionality is known as abstraction -Achieved by interfaces
and abstract classes. (vehicle is abstract class, car is subclass)

 Python uses multiple inheritance unlike Java

OOP – Practice

#!/usr/local/bin/python3
class Employee():
Common base class for all employees'

emp_count = 0

def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.emp_count += 1

def display_count(self):
print(f'Total Employee {Employee.emp_count}')

def display_employee(self):
print('Name : ', self.name, ', Salary: ', self.salary)

OOP – Practice

Create 2 employees Alice and Bob
emp1 = Employee('Alice', 2000)
emp2 = Employee('Bob', 5000)
emp1.display_employee()
emp2.display_employee()
print(f'Total Employee {Employee.emp_count}')
 Here we don't see any advantage of OOP
 What about creating new classes like Manager, Sales,

Support? We can subclass common Employee class and
inherit all data and functions. Also we can add new functions
or just override functions in the Employee class.
Polymorphism allows us to call same function but get
different behaviors for different objects.

OOP – Practice

 How can we create a subclass Manager from Employee?

• class Manager(Employee):

 How can we create a constructor for Manager?

• We can call superclass(Employee) constructor and add
additional attributes

• super().__init__(name,salary)

 How can we display Manager objects differently?

• We want to display additional attributes

• We use polymorphism and override existing
display_employee() method

Inheritance

 Inheritance and overriding
class Animal:

def __init__(self, name): # Constructor
self.name = name

def speak(self): # Abstract method
raise NotImplementedError("Subclass must implement abstract method")

class Dog(Animal):
def speak(self):

return self.name+' says Woof!'

class Cat(Animal):
def speak(self):

return self.name+' says Meow!'

dog1 = Dog('Max'); dog2 = Dog('Jack'); cat1 = Cat('Lucy')
print(dog1.speak()); print(cat1.speak()); print(dog2.speak())

Overloading

 Overloading constructor
class Animal:

def __init__(self,name,legs):
self.name = name
self.legs = legs

class Bear(Animal):
def __init__(self,name,legs=4,hibernate='yes'):

Animal.__init__(self,name,legs) # super() is also ok
self.hibernate = hibernate

def __init__(self,name='Yogi',legs=4,hibernate='yes'):
Animal.__init__(self,name,legs)
self.hibernate = hibernate

bear1 = Bear('Bone-Cracker'); bear2 = Bear()
print(bear1.name); print(bear1.legs); print(bear1.hibernate)
print(bear2.name); print(bear2.legs); print(bear2.hibernate)

Overriding
 Overriding print
class Account:

def __init__(self,owner,balance=0):
self.owner = owner
self.balance = balance

def __str__(self):
return f'Account owner: {self.owner}\nAccount balance: ${self.balance}'

def deposit(self,dep_amt):
self.balance += dep_amt
print('Deposit Accepted')

def withdraw(self,wd_amt):
if self.balance >= wd_amt:

self.balance -= wd_amt
print('Withdrawal Accepted')

else:
print('Funds Unavailable!')

acct1 = Account('Ali',1000); print(acct1) #print the object with __str__
acct1.owner; acct1.balance; acct1.deposit(50); acct1.withdraw(100);
acct1.withdraw(1500) # Rejected

Multiple Inheritance

 Multiple Inheritance
class Car:

def __init__(self,wheels=4):
self.wheels = wheels # All cars have four wheels by default.

class Gasoline(Car):
def __init__(self,engine='Gasoline',tank_cap=50):

Car.__init__(self)
self.engine = engine
self.tank_cap = tank_cap # Represents fuel tank capacity in liters
self.tank = 0

def refuel(self):
self.tank = self.tank_cap

Multiple Inheritance

 Multiple Inheritance
class Electric(Car):

def __init__(self,engine='Electric',kWh_cap=60):
Car.__init__(self)
self.engine = engine
self.kWh_cap = kWh_cap # Represents battery capacity in kilowatt-hours
self.kWh = 0

def recharge(self):
self.kWh = self.kWh_cap

class Hybrid(Gasoline, Electric):
def __init__(self,engine='Hybrid',tank_cap=30,kWh_cap=10):

Gasoline.__init__(self,engine,tank_cap)
Electric.__init__(self,engine,kWh_cap)

prius = Hybrid(); print(prius.tank); print(prius.kWh) ; prius.recharge();
print(prius.kWh)

OOP – LAB

 LAB: Using OOP, create a base class Employee with name and
salary attributes and display_employee() method. Create a
Manager class by subclassing Employee with an additional
bonus attribute.
• Override display_employee() method to display additional

bonus field for Manager objects.
• If Manager is created without bonus value, it should

assume default bonus as 2000 (overload constructor)
• Finally create two Employees Alice and Bob with initial

salaries. Also create two Manager Charlie and Steve.
Charlie has bonus but Steve created with default bonus.
Print credentials of all employees, including total number
and bonus salary of Charlie.

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

Regular Expression

 Practice to remind OS metachars and Regex Metachars
using linux.words file and egrep command

 Check Website: https://regex101.com/
 Python module for regex  re

>>> import re
>>> line = '/usr/local/bin/python/test'
>>> new = re.split('/',line)
>>> line2 = '/usr/local:bin/python/test' # Split / or :
>>> new2 = re.split('[/:]',line)
>>> new2.remove('')
>>> line2 = ' => '.join(new2)

Search and Match

 The search method is essential for regex searches

line = 'Once upon a time in China. The year 1003..'

result1 = re.search('(Chi.*)\.',line)

result1.group(1) => 'China. The year 1003.'

• Why? Because of default greediness, how to fix?

result1 = re.search('(Chi.*?)\.',line)

result1.group(1) => 'China'

• How to make it case insensitive?

result1 = re.search('(chi.*?)\.',line, re.I)

• Exact match? result1 = re.match('(Chi.*)\.',line)

Regex Grouping and Findall

 The findall method returns a list of all matches
line = 'Littlewood is a little town in England'
result = re.findall('(lit\w+)', line, re.I)
print(result)

 Grouping is useful for extraction, repetition, and sub
patterns
• (a.c){2,4} => Repetition
• (alice|bob|charlie) => Sub patterns
• result.group(1), result.group(2) => Extraction

 Also keep in mind about metachars, Python and regex
both has it. Therefore use r' ' when you perform a search

Regex Find and Replace

 One of the most important re methods is sub.
 Syntax: re.sub(pattern, repl, string, max=0)

• This method replaces all occurrences of the RE pattern in
string with repl, substituting all occurrences unless max
provided. This method returns modified string.

phone = '0212-226-3030 # This is Phone Number'
• Delete Python-style comments starting with # till end
num = re.sub(r'#.*$', '', phone)
• Remove anything other than digits
num = re.sub(r'\D', '', num)
• Finally remove if first digit is 0
num = re.sub(r'^0', '', num)
print('Phone Number : ', '+90 (' + num[:3] + ') ' + num[3:])

Regex Patterns
Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m
option allows it to match newline as well.

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding
expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding
expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

Regex Special Char Classes

Example Description

. Match any character except newline

\d Match a digit: [0-9]

\D Match a nondigit: [^0-9]

\s Match a whitespace character: [\t\r\n\f]

\S Match nonwhitespace: [^ \t\r\n\f]

\w Match a single word character: [A-Za-z0-9_]

\W Match a non-word character: [^A-Za-z0-9_]

\b Match if beginning or at the end of a word

\B Match if inside of a word

Regex Option Flags

 Regular Expression Modifiers: Option Flags

• You can provide multiple modifiers using OR (|)
Modifier Description

re.I Performs case-insensitive matching.

re.L Interprets words according to the current locale. This interpretation
affects the alphabetic group (\w and \W), as well as word boundary
behavior (\b and \B).

re.M Makes $ match the end of a line (not just the end of the string) and
makes ^ match the start of any line (not just the start of the string).

re.S Makes a period (dot) match any character, including a newline.

re.U Interprets letters according to the Unicode character set. This flag
affects the behavior of \w, \W, \b, \B.

re.X Permits 'cuter' regular expression syntax. It ignores whitespace
(except inside a set [] or when escaped by a backslash) and treats
unescaped # as a comment marker.

Regex Labs

 Example: Convert camel notation strings to snake notation
strings.
import re
def convert(name):

return re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()
print(convert('CamelCaseVariable'))

 LAB: Check if keyboard input value is float with regex
 LAB: Find a regex to validate only these values: -255..0..255
 LAB: You are given a file 'email_errors.txt' that contains

emails within lots of error messages. You are asked to write a
Python Program lab11_regex.py that cleanly extracts emails
and prints on the screen.
• Emails may contain letters,numbers,_,.,-, and one @ char

in the middle e.g. tahsin.demiral@gmail.com

Work Flow

Numbers

Strings

If - else

Loops

Functions

Lists and
Tuples

Dictionaries

Files and
Exceptions

Object
Oriented P.

Advanced
Topics

OS and Python Communication

 I/O fundamentals and redirection:

• Stdin

• Stdout

• Stderr

 How to send output other than stdout?

log = open('log.txt', 'a')

print(6, 28, 42, file=log) # Prints to file log.txt
print('The Hitchhikers Guide to Galaxy') # To stdout
log.close()

Python on Linux

 Edit Python script lab12_os_print.py
import fileinput

with fileinput.input() as f:

for line in f:

print('Coming from OS:',line, end='')

• # cat /etc/passwd | lab12_os_print.py
 How to run UNIX command within Python

• import os ; os.system('date') #Deprecated

• import subprocess ; subprocess.call('date') #New

How can you access output to a python parameter?

Write a script for ls -l command:lab12_os_command.py

Command Line Parameters

 Parameter Passing. Module sys has to be imported
Iteration over all arguments using sys.argv
import sys
for each_arg in sys.argv:

print(each_arg)
 LAB: Using parameter passing, give two numbers and

operator +, or * to add or multiply and print result
 LAB: Write a python script to search a keyword within

files ./lab12_command_line.py apple fruit1.txt fruit2.txt
• Note that script should accept one search key and

many filenames

LAB – Password Cracking

 LAB: Write a Python program that cracks passwords
using /etc/shadow hashed information. Note that you
can use crypt module and crypt function to generate
SHA512 hashes. You need to give shadow line of the
user and let python tries all possibilities (brute-force)
Note that more than 4 chars takes very long time.

 Bonus LAB: Before you start ask whether password
consists of alphanumeric, alphabetic, or just numeric
characters to speed up trial and error.

Appendix A. Language Extras

 What is not in Python Language?
 ++ and -- operator does not exist. Use +=1 instead
 Case/Switch Statement is not included in Python

https://www.python.org/dev/peps/pep-3103/
 Is ; used in Python?

• ; is not the end of expressions
• a = 1; b = 2; print(a + b) # Three statements on one line

 {} not used for blocks. In Python {} is dictionary!
 You must use indentation. Convention is 4 spaces (PEP8)
 Howto exit from Python script?

• sys.exit(3) => Exit with error code 3. Check $? in Linux

Print and Formatting

 print() function details
• How do you suppress newline and specify seperator?

print('apple', 'orange', 'banana', sep=':', end=' ')
apple:orange:banana

• Formatted output
a=16.6667
print('%8.2f' %a) # Just Like C printf function!
S='The result is '
print('%20s %8.2f' % (S,a))
print(f'{S} {round(a,2)} ') # New format string
print("{0:<20s} {1:8.2f}".format(S, a))

Import, Input, Eval, and Exec

 import vs. from/import
import time as t
t.sleep(0.1)
from time import sleep => import only sleep function
sleep(0.1) => No need to use time.sleep()

 input() always returns raw string if you want to evaluate
input then use eval() function

 eval() evaluates statement and returns value, exec() runs
the code returns None
a = 42
b = eval('17 + a') or use exec('b = 17 + a')

Set and FrozenSet

 Sets are just like Lists, except un-ordered and no duplication
allowed. This is same concept as math sets. Major functions
are add() and remove(), there is no indexing. Frozensets are
just like tuples (immutable)

 Set example: Create 6 unique numbers within 1..49
import random as rd
my_set = set()
while len(my_set) < 6:

value = rd.randint(1,49)
my_set.add(value)

print('Winning numbers are', my_set)
print('Sorted numbers are', sorted(my_set))
my_frozen_set = frozenset(my_set)

Function Parameters: *args, **kwargs

 In Python, you can use *args and **kwargs to dynamically choose
number of parameters when you call a function

def add_numbers(*args):
total = 0
for var in args:

total += var
return total

print(add_numbers(1,2,3,4,5))

def add_numbers(**kwargs):
total = 0
for key, value in kwargs.items():

print(key,'=>',value)
total += value

return total
print(add_numbers(first_number=3,second_number=5, third_number=8))

Datetime Module

 Datetime module has many useful methods to process dates,
times, and timezones.
from datetime import datetime, date, timedelta
import pytz
today = date.today()
print("Current date:", today)
print("Current year:", today.year, "month:", today.month, "day:",
today.day)
print(pytz.all_timezones[:5])
local = datetime.now()
print("Local:", local.strftime("%m/%d/%Y, %H:%M:%S"))
tz_NY = pytz.timezone('America/New_York')
datetime_NY = datetime.now(tz_NY)
print("NY:", datetime_NY.strftime("%m/%d/%Y, %H:%M:%S"))

Walrus Operator in Python 3.8

 In Python 3.8 Walrus operator is in use

• This operator helps you check value and assign to
variable at the same time

• Lets throw a dice, 6 wins

import random as rd

print('Throwing a dice, 6 wins')

if (dice := rd.randint(1,6)) == 6:

print('You Win!!')

else:

print(f'You throw => {dice}')

The End

